- Lecture
- Discussion groups and problem solving
- Practical application in the laboratory
- Field observation and/or video observation
- Reading assignments and discussion groups via myDouglas
- Instructor tutoring
- Introduction to Evolution and Taxonomy
- process and mechanisms of evolution
- sources of heritable variation within a species
- meaning and role of fitness in evolution
- types of natural selection
- levels of organization in the biosphere
- principles of taxonomy
- survey of major taxa, from viruses to animals
- Origins and Evolution of Life
- theories regarding the origins of life
- origin of prokaryotic and eukaryotic cells
- macroevolution, speciation and reproductive isolating mechanisms
- Introduction to Genetics
- mitosis and meiosis
- Mendelian Inheritance: theory and problems
- Non-Mendelian Inheritance: multiple alleles, sex linkage and multigenic inheritance.
- Molecular and Cellular Basis of Life
- chemistry of amino acids
- formation of primary, secondary, tertiary and quaternary structure of proteins.
- functions and mechanisms of action of enzymes
- functions and structures of DNA and RNA
- replication of DNA
- protein synthesis
- molecular and chromosomal basis of mutations
- structure and function of cellular organelles
- structure and function of biologically-important lipids & carbohydrates
- models of membrane structure and membrane transport
- Conversion and Use of Energy by Cells
- location and process of cellular respiration
- catabolic pathways and interrelationships for carbohydrates, fats and proteins
- significance of ATP
- location and process of photosynthesis
- light dependent reactions & light independent reaction
- Plant and Animal Growth and Development
- mechanisms by which seed plants reproduce
- process of double fertilization
- results of fertilization and growth of seeds
- role of soil in plant growth and development, including impact of acid rain
- role of plant hormones and the photoreceptor phytochrome on plant growth and development
- process of animal fertilization
- embryological development following fertilization
- significance of primary germ layers
- Introduction to Ecological Systems
- organization of biomes
- succession in terrestrial and aquatic habitats
- population dynamics and community interactions
- energy flow and nutrient cycling
- Laboratory Techniques
- techniques required for the use of common laboratory equipment
- use of compound and stereomicroscopes
- preparation of various wet mounts for microscope work
- introduction to experimental methods
- development of dichotomous keys
- preparation of plant tissue for microscopic chromosome analysis.
- lab analysis of enzyme action and optimum pH
- technique of paper chromatography for separation of leaf pigments.
- measurement of fermentation rate in yeast
Upon completion of this course, students will be able to:
- Understand and explain an understanding of the relationship between the biotic and abiotic components of the biosphere, their interactions and relationship to evolution.
- Use and demonstrate techniques for identifying plants and animals, including use of microscopes and dichotomous keys.
- Understand and explain the evolutionary relationships among major taxa.
- Understand and explain the relationship between genetics and evolution.
- Appreciate the scientific process, including the use of testable hypotheses.
- Explain cell division in plants and animals, and describe the significance of mitosis and meiosis to growth, development and reproduction.
- Solve monohybrid and dihybrid problems, and problems involving multiple alleles and sex-linked genes.
- Explain the molecular basis and significance of proteins, nucleic acids, lipids and carbohydrates, and their relationships to cellular respiration, photosynthesis and general metabolism.
- Explain how DNA and RNA replicate and code for proteins, and analyse problems using the genetic code.
- Understand and explain how genes interact with the environment, and the role of mutations, meiosis and fertilization in changing the genetic composition of populations over time.
- Discuss the mechanisms of evolution, and apply evolutionary concepts to the analysis of current environmental problems.
- Demonstrate the use of common laboratory equipment.
- Conduct simple directed experiments and explain the procedures and results.
- Understand and use biological principles in the discussion of current topics in Biology.
Evaluation will be carried out in accordance with ÌÇÐÄvlog´«Ã½policy. The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester. Evaluation will be based on the following:
Evaluation | Marks |
Class tests and assignments | 15-25 |
Laboratory assignments and quizzes | 5-15 |
Laboratory examination - final | 10-15 |
Comprehensive examination - midterm | 25-35 |
Comprehensive examination - final | 25-35 |
TOTAL | 100 |
Notes:
1. Laboratory Experiments and Activities
Laboratory work will be assigned each week. The laboratory work must be completed in the week it is assigned. Laboratory experiments and assignments are a compulsory component of this course. A minimum of 50% of the laboratory experiments and assignments must be completed to receive a P or better in the course.
2. Examinations
There will be one midterm and one final examination. The final examination will cover the entire course. If the student achieves a better grade on the final exam than on the midterm examination, the midterm grade will be raised to equal that of the final examination.
Students should consult the ÌÇÐÄvlog´«Ã½Bookstore for the latest required textbooks and materials. For example, textbooks and materials may include:
Reece, J.B. et al., Campbell Biology. (Current Edition). Benjamin Cummings.
ÌÇÐÄvlog´«Ã½produced manual: Biology 1310: Introduction to Biology.