
o n , Se ct i on(s)

Revised: K, M, N, P, Q

 Date of Previous Revision:

Date of Current Revision:

SeS e o n : : T 0 3 T m
 (S e) T j
 n o J 5 2 5 . 3 T m
 2 5 6 n C 9 2 5 . 3 T m
 (o n :) T j
 1 0 . . 0 2 1 0 . 0 2 4 0 8 . 3 6 1 7 5 7 1 . 3 2 T m
 (P) T j
 1 0 . 0 2 0 0 1 0 . 0 2 4 e 0 0 1 0 . 0 2 3 9 3 . 9 3 7 7 5 2 . 4
 0 . 0 2 0 0 1 0 . 0 2 4 e 0 0
 0 7 2 3 9 3 . 9 3 7 7 5 2 . 4 9 9 8 0 . 0 2 0 0 1 0 . 0 2 4 e 0 0 2 1 0 . 9 T m
 (9 3 . 9 3 7 7 5 2 . 4 0 0 3 T m
 (S e) T j
 n o J 5 2 5 . 3 0 1 5 2 5 . 3 T m
 (e) T j
 1 0 . 0 0 0 0 1 T w 1 0 . 0 2 0 0 1 0 . 0 2 3 5 2 5 . 3 T m
 5 . 3 T m
 (D a t) T 0 3 T m
 (S e) T j
 n o J 5 2 5 . 3 1 T m
 (o n :) T j
 1 0 . . 0 2 4 3 9 . 1 7 4 0 5 4 8 . 2 9 . 1 7 4 - 0 . w 1 0 . 0 2 0 0 1 0 . 0 2 3 5 2 5 . 3 T m
 . 0 2 1 7 9) T j
 N o v e m b e r T f
 1 0 . 0 2 0 0 1 0 . 0 2 4 e 0 0 3
 0 . 2 0 0 1 0 . 1 7 9 S e

r

r

ystems Design and Architecture E: 3

Subject & Course No. Descriptive Title Semester Credits
F: Calendar Description:

This course introduces computer systems design and architecture. It begins with a review of the main
digital circuit building blocks in a computer, the basic structure of a single bus computer, assembly
language, and addressing modes.

M: Course Objectives / Learning Outcomes:

The student should be able to:

• demonstrate an understanding of the relationship between the machine language and the computer

hardware in the context of functionality and complexity by
• designing and implementing programs in machine and assembly language
• functionally describing architectural support for operating systems and programming

languages such as heaps, stacks, and task switching
• describing the function of the hardware using a formal description language such as RTN

(Register Transfer Notation)
• virtually simulating the hardware functions

• using a high level language such as VHDL, Verilog, or C++
• using a logic circuit simulator such as LogicWorks

• quantitatively describing the complexity and speed of various architectural components
using mathematical functional notation and timing diagrams

• understand numbers of various bases and operations to be done on them by
• mathematically defining fixed point and floating point numbers
• designing arithmetic circuits or algorithms used to implement addition, subtraction,

multiplication, and division
• understand the concept of microprogramming demonstrated by

• describing the hardware usin

	June 9, 1998

