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ystems Design and Architecture    E: 3 

Subject & Course No. Descriptive Title Semester Credits 
F: Calendar Description: 

 
This course introduces computer systems design and architecture.  It begins with a review of the main 
digital circuit building blocks in a computer, the basic structure of a single bus computer, assembly 
language, and addressing modes. 



 
 

M: Course Objectives / Learning Outcomes: 
  
The student should be able to: 
 
• demonstrate an understanding of the relationship between the machine language and the computer 

hardware in the context of functionality and complexity by 
• designing and implementing programs in machine and assembly language 
• functionally describing architectural support for operating systems and programming 

languages such as heaps, stacks, and task switching 
• describing the function of the hardware using a formal description language such as RTN 

(Register Transfer Notation) 
• virtually simulating the hardware functions 

• using a high level language such as VHDL, Verilog, or C++ 
• using a logic circuit simulator such as LogicWorks 

• quantitatively describing the complexity and speed of various architectural components 
using mathematical functional notation and timing diagrams 

• understand numbers of various bases and operations to be done on them by 
• mathematically defining fixed point and floating point numbers 
• designing arithmetic circuits or algorithms used to implement addition, subtraction, 

multiplication, and division 
• understand the concept of microprogramming demonstrated by  

• describing the hardware usin
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